



¹SHAVEJ ALI SIDDIQUI, ²ARSHAD ALI, ³RAJENDRA KUMAR TRIPATHI

¹³Khwaja Moinuddin Chishti Language University, Lucknow, U.P, India
²Sacred Heart Degree College, Sitapur, U.P, India

¹³Department of Applied Sciences and Humanities, Faculty of Engineering and Technology

²Department of Mathematics,

Abstract

es concio

K Yano [5], has studies the structure defined by a tensor field $f(\neq 0)$ of type (1,1) satisfying $f^3 + f = 0$. In the present paper, we have defined and studied f_{λ} - structure, we have also obtained positive definite Riemannian metric with respect to which the complementary distribution are orthogonal

Keywords: Tensor field, covariant vector, contravariant vector, C^{∞} , n - dimensional manifold

1. Let M_n be an n-dimensional differentiable manifold of class C^{∞} and let there be given a tensor field $f \neq 0$ of class C^{∞} such that

(1.1)
$$f^3 - \lambda' f = 0, \ 0 \le r \le n$$

where λ is non-zero number, r is an integer and is of constant rank s at each point of M, then f is called " f_{λ} -structure of rank s", and M with f_{λ} -structure a " f_{λ} -manifold".

Theorem1.1: For a tensor field $f \neq 0$ satisfying (1.1), the operators

(1.2)
$$I = \left(\frac{f^2}{\lambda'}\right)$$
, and $m = I - \left(\frac{f^2}{\lambda'}\right)$

I denoting the identity operator, applied to the tangent space at a point of the manifold are complementary projection operators.

Proof: We have

$$l + m = I$$
 and

$$I^{2} = \left(\frac{f^{2}}{\lambda'}\right)^{2} = \frac{f^{4}}{\lambda^{2r}} = I, \ m^{2} = \frac{f^{4}}{\lambda^{2r}} - 2\frac{f^{2}}{\lambda'} + I = m$$

lm = ml = 0

by virtue of (1.1) which proves the theorem.

