ISSN NO : 1006-8341

For Basic Sciences

QUEUEING SYSTEM WITH INTERDEPENDENT ARRIVAL AND SERVICE PROCESSES

Shavej Ali Siddiqui

ORCID ID: 0000-0002-4758-7238 ¹Assistant Professor (Mathematics) ¹Department of Applied Sciences and Humanities, Faculty of Engineering & Technology, Khwaja Moinuddin Chishti Language University, Lucknow (Uttar Pradesh), India

ABSTRACT

In this paper, we consider the single server queueing system having the interdependent arrival the service processes with bulk service. Here, we consider that the customers are served k at a time except when less then k are in the system and ready for service at which time customers are served.

KEYWORD

Interdependent queueing models, arrival process, service process, waitng line system, mean dependence.

OPTIMIZATION $M/M^{[K]}/1$ QUEUEING MODEL WITH VARYING BATCH SIZE:

In this sort of systems, the interdependence can be induced by considering the dependence structure with parameters λ , μ and \in as marginal arrival rate, service rate and mean dependence rate respectively.

Let $P_n(t)$ be the probability that there are *n* customers in the system at time *t*. The difference – differential equations of the model are,

$$P'_{n}(t) = -(\lambda + \mu - 2 \in)P_{n}(t) + (\lambda - \epsilon)P_{n-1}(t) + P_{n-k}(t) \quad ; \quad n \ge 1$$

$$P'_{0}(t) = -(\lambda - \epsilon)P_{0}(t) + (\mu - \epsilon)\sum_{i=1}^{k} P_{i}(t)$$

Assuming that, the system reached the steady state, the transition equations of the model are,

$$-(\lambda + \mu - 2 \epsilon)P_n + (\lambda - \epsilon)P_{n-1} + (\mu - \epsilon)P_{n-k} = 0 \qquad ; \quad n \ge 1$$

(1)